
Data Science blueprint
Release 1.0

May 07, 2020

Presentation:

1 Introduction 1

2 Blueprint’s structure 3

3 Make this your own 5

4 Installation 7

5 Environment 9

6 Quality testing 13

7 Using the cli interface 15

8 Requirements 17

9 Using cookiecutter 19

10 Installation 21

11 Project operations 23

12 Make the installation your own 27

13 Commands 29

14 Build & Start 31

15 Notebook 33

16 Shell 35

17 Make the environment your own 37

18 Flake8 39

19 Unit tests 41

20 Code coverage 43

i

21 Package your project 45

22 Create your app 47

23 Indices and tables 49

ii

CHAPTER 1

Introduction

Data science blueprint is a nothing more than a data science project structure proposition. Its purpose is very simple :

• help you build a robust project

• help you gain some confidence regarding the reliability of the code

• help you meet the requirements needed to deploy in a production environment

• Bring data scientists and machine learning engineers to work together around a common code base

To reach this goal, the blueprint proposes some interesting features that will be covered in this documentation :

• a personalized backbone for your data science project, thanks to cookiecutter

• a dockerized environment that you can use to work with notebooks

• a code quality focus, with the set of tools that will help you profiling and testing your code

• a set of tools to let you use your project as an app that you can deploy on a production server, or on a remote
python

repository like Pypi

The Data Science blueprint works with Python projects, with fully packaged code and also Jupyter notebooks. It is
particularly adapted to data science projects.

1

Data Science blueprint, Release 1.0

2 Chapter 1. Introduction

CHAPTER 2

Blueprint’s structure

The blueprint file structure follows the following pattern. Let’s consider that after installing the project with cook-
iecutter, you have decided to call it awesome_project

data <- The data folder used by default by the dockerized
→˓environment

docker <- docker files injections used to build the environment

docs <- Sphinx documentation of the project

notebooks <- Jupyter notebooks used by the dockerized environment

awesome_project <- Source code location of this project.
__init__.py <- Makes it a Python module

commands <- Command scripts that will allow you to use your project
→˓with command lines

cmd.py

features <- Contains the scripts that will handle feature explorations
→˓and engineering

models <- Contains the scripts that will handle the models

operator <- Contains the scripts that will handle data processing
data.py
dataframe.py
generator.py

tests <- Contains the unit tests
operator

data.py
dataframe.py
generator.py

(continues on next page)

3

Data Science blueprint, Release 1.0

(continued from previous page)

Dockerfile <- Build file used by Docker to build the project environment

LICENSE

Makefile <- Makefile to run commands over the project

README.md

requirements.txt <- The requirements file that lists all the package
→˓dependencies to install

setup.cfg <- Configuration file used to fill the setup.py file

setup.py <- Setup file to install the project as a pip package

.gitignore <- Avoid pushing tmp files that should never exist on Github

As you can see in the file tree, some python files have been added (particularly in the awesome_project folder). You
must keep in mind that those files have been added only for demonstration purposes. Their purpose is to help you
understand how the unit tests are organized, how the project code should be organized.

Note: After you have installed the blueprint, and you have got to know how to use it, you will indeed remove the unit
tests, the operator files, and write your owns.

4 Chapter 2. Blueprint’s structure

CHAPTER 3

Make this your own

The very purpose of this blueprint is that you make it your own. That said, you are allowed to bring any modifications
you want to the blueprint. You can fork it, change any part you want, use it for commercial or non commercial use,
and even republish it under your own brand if you wish to.

Feel free to give me your feedbacks. With your feedbacks, I can design some new features. I will integrate them into
the blueprint, and update the documentation. As I have said before, the project is available on github, here. You can
also easily clone it like this:

git clone https://github.com/mysketches/data-science-blueprint.git

If you wish to contribute to my project, I’d be glad to receive your pull requests on Github. If you see a bug, or
something os not clear, you can also create an issue on Github.

5

https://github.com/mysketches/data-science-blueprint

Data Science blueprint, Release 1.0

6 Chapter 3. Make this your own

CHAPTER 4

Installation

Installation of the blueprint will proceed as follow:

$ pip install cookiecutter
$ cookiecutter https://github.com/mysketches/data-science-blueprint

This should output the following form:

full_name [John Doe]:
email [john.doe@myemail.org]:
project_name [DS-blueprint]:
package_name [Awesome project]:
package_slug [awesome_project]:
project_short_description [No description]:
version [0.1.0]:
Select python_interpreter:
1 - python3
2 - python
Choose from 1, 2 [1]:
application_cli_name [awesome-project-cli]:
Select opensource_licence:
1 - MIT
2 - BSD
3 - ISCL
4 - Apache Software License 2.0
5 - Not open source
Choose from 1, 2, 3, 4, 5 [1]:
docker_base_image [jupyter/base-notebook:python-3.7.6]:
docker_image_name [awesome-project-env]:
docker_container_name [awesome-project-env-instance]:
docker_container_port [8888]: 8082

Leave the fields blank if you wish to use the default values.

That’s it, your blueprint is installed, and ready to work !

7

Data Science blueprint, Release 1.0

8 Chapter 4. Installation

CHAPTER 5

Environment

5.1 Build the environment

After the blueprint is installed, most of what you will do with your environment will work through the make command.
You can build your environment like this:

$ make environment-build

You should see the following output:

Successfully built c70c2ec13421
Successfully tagged awesome-project-env:latest

Environment is built! A Docker image was created: awesome-project-env

Let’s add some sample data to our project:

$ make environment-data

You can now start your environment:

$ make environment-start

You should see the following output:

05f32052868110f38e8233a2ac70ebff076272c7997f5409a8d70a780fc33ec7
Environment is running!
Notebooks interface is available at http://localhost:8082

9

Data Science blueprint, Release 1.0

5.2 Use the Jupyter interface

You can now reach out to your environment interface, and access the Jupyter notebook instance. A notebook has been
created with the blueprint, to give you a sample exploration. It is located in the notebooks folder. After displaying it,
you can run the cells.

5.3 Work with the shell

Back to your terminal, you can now launch a shell:

$ make environment-shell

You are now in the shell, and you will notice that the prompt has changed:

jovyan@awesome_project:~$

Move to the scripts folder, and launch a python script that tests your package:

jovyan@awesome_project:~$ cd scripts
jovyan@awesome_project:~/scripts$ python3 nz-mapping.py

This is the output you should expect:

10 Chapter 5. Environment

Data Science blueprint, Release 1.0

NZ_area Count geo_level
0 Area Outside Region 6 Regional council areas
1 Area Outside Region 15 Regional council areas
2 Area Outside Region 9 Regional council areas
3 Area Outside Region 15 Regional council areas
4 Area Outside Region 3 Regional council areas

NZ_area Count geo_level
0 area outside region 6 REGIONAL COUNCIL AREAS
1 area outside region 15 REGIONAL COUNCIL AREAS
2 area outside region 9 REGIONAL COUNCIL AREAS
3 area outside region 15 REGIONAL COUNCIL AREAS
4 area outside region 3 REGIONAL COUNCIL AREAS

5.3. Work with the shell 11

Data Science blueprint, Release 1.0

12 Chapter 5. Environment

CHAPTER 6

Quality testing

You can check that the your project meets the Python coding conventions:

$ make lint

If you try this command with the fresh installation of the blueprint, nothing should output this command as the code
written in the blueprint respects the conventions.

Let’s run unit tests now:

$ make test

This is the output you should get:

=================================== test session starts ==============================
platform linux -- Python 3.7.6, pytest-5.4.1, py-1.8.1, pluggy-0.13.1
rootdir: /data
collected 4 items

awesome_project/tests/operator/test_data.py . [25%]
awesome_project/tests/operator/test_dataframe.py .. [75%]
awesome_project/tests/operator/test_generator.py . [100%]

=================================== 4 passed in 0.84s ================================

Finally, you can launch a coverage test over your project:

$ make coverage

This is the output you should get:

Name Stmts Miss Cover Missing
--
awesome_project/__init__.py 4 0 100%
awesome_project/operator/data.py 6 0 100%

(continues on next page)

13

Data Science blueprint, Release 1.0

(continued from previous page)

awesome_project/operator/dataframe.py 6 0 100%
awesome_project/operator/generator.py 4 0 100%
awesome_project/tests/operator/test_data.py 6 0 100%
awesome_project/tests/operator/test_dataframe.py 11 0 100%
awesome_project/tests/operator/test_generator.py 3 0 100%
--
TOTAL 40 0 100%

14 Chapter 6. Quality testing

CHAPTER 7

Using the cli interface

As the project is packaged in the environment, it is possible to use to run your project command lines. Open the
environment shell:

$make environment-shell

We will use a sample command written for the sake of the blueprint. It just generates a sequence of text. You can call
it like this:

jovyan@awesome_project:~$ awesome-project-cli

As you didn’t write any action to perform, here is the obvious output you’ll get:

Usage:
awesome-project-cli lorem <iterations> [--text-size=<text_size>]
awesome-project-cli data <data-url> <data-location>
awesome-project-cli (-h | --help)

Let’s use the lorem action. It generates a list of lorem ipsum text:

jovyan@awesome_project:~$ awesome-project-cli lorem 10 --text-size=50

Here is the final output:

['Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing',
'Lorem ipsum dolor sit amet, consectetur adipiscing']

15

Data Science blueprint, Release 1.0

16 Chapter 7. Using the cli interface

CHAPTER 8

Requirements

To install the Data Science blueprint and benefit from all its features, a few requirements will have to be checked

• python

• docker

• pip

• git

And that’s it. To check your python version, you can type in this instruction in your favorite terminal. Knowing which
executable is installed on your machine will help you decide on the python interpreter to choose

python --version
python3 --version

Regarding Docker, you must be able to run docker commands without being sudo. Therefore, you must be able to
check this command on your terminal:

docker --version

If it appears that you need to be sudo to run docker, then you must add your user account to the docker group that was
created after installing docker on your machine. This can be done thanks to this command:

sudo usermod -aG docker $USER

To interact avec the blueprint, you will need to run the make command many times. This command can run definitions
that are specified in the Makefile file. Depending on the operating system you are installing the blueprint on, you
will find much documentation about how to install make.

17

Data Science blueprint, Release 1.0

18 Chapter 8. Requirements

CHAPTER 9

Using cookiecutter

The blueprint will be installed using a great tool called cookiecutter. When launching Cookiecutter, the program will
ask for some variables, whose values will configure the blueprint in order to make it your project.

Here is the list of the variables that will be set by Cookiecutter

Variable Default value Definition
full_name John Doe Name of the author / maintainer
email john.doe@myemail.org Email of the author / maintainer
project_name DS project Name of the folder where the blueprint will be installed
package_name Awesome project Name of the project
package_slug awesome.project Formatted name of the project that will be used with

packages
project_short_descriptionNo description Description of your project
version 1.0.0 Version of the project
application-cli-name {project_slug}-cli Unix command to use your packaged project as an app
opensource_licence “MIT”, “BSD”, “ISCL”,

“Apache”. . .
Licence for your project

docker_base_image jupyter/base-
notebook:python-3.7.6

Docker image used to build the environment

docker_image_name {package_slug}-env Name of the built Docker image that will be used as your
environment

docker_container_name{docker_image_name}-
instance

Name of the Docker container that will be instanciated

docker_container_port 8888 Port exposed to access Jupyter notebooks

19

mailto:john.doe@myemail.org

Data Science blueprint, Release 1.0

20 Chapter 9. Using cookiecutter

CHAPTER 10

Installation

Installing the blueprint will be quite easy.

First, you need to install cookiecutter, with this command:

pip install cookiecutter

Now Cookiecutter is installed, you can install the Data Science blueprint:

cookiecutter https://github.com/mysketches/data-science-blueprint

The blueprint should now be installed in the folder matching the value you set for the cookiecutter variable
project_name.

After testing the blueprint, I found situations where the cookiecutter would not be recognized. If this happens, you can
call it with this alternate command:

python -m cookiecutter https://github.com/mysketches/data-science-blueprint

21

Data Science blueprint, Release 1.0

22 Chapter 10. Installation

CHAPTER 11

Project operations

The Makefile will help you work on the structure of your project. Data science projects are about coding of course,
but it is also about all that is going around, such as working on a Jupyter notebooks interface, running unit tests, and
even deploying your project.

To work your project beyond coding, all you will need is the make command installed on your machine. Depending
on your operating system, there are many ways to install make.

11.1 Install dependencies

The blueprint comes with a requirements.txt file, whose purpose is to list the packages that will be required to
work your project.

Here is the list of the requirements that come with the blueprint:

coverage
flake8
numpy
pandas
scikit-learn
matplotlib
docopt
configparser
pytest

You are indeed encouraged to update this file and make it fit your needs.

To install the dependencies on your machine, just open a terminal, move to the folder where the blueprint is installed,
and type in the following command:

$ make install

23

Data Science blueprint, Release 1.0

11.2 Update dependencies

In order to update the version of your dependencies (because you have specified a specific version of a dependency in
the requirements.txt file, or because there is a newer latest version of the dependency on pypi), you can open a
terminal, move to the folder where the blueprint is installed, and type in the following command:

$ make upgrade

11.3 Install your project as a package on your machine

You can package your project, and install it as a python package on your machine. Once packaged, your project is part
of the Python path, and can be called in another project or anywhere else on your machine.

In particular, you could also imagine packaging your project in a Docker image, and deploy it in the Cloud. You could
then spawn resources and call entry points to run your data science project.

To package your project on your machine, just open a terminal, move to the folder where the blueprint is installed, and
type in the following command:

$ make package

After this command is complete, you can import your project in any python script that would be running on your
machine.

11.4 Build your environment

Your work environment will be built with Docker. Therefore, in order to create this environment, you will have to
build a Docker image.

To build your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-build

11.5 Start your environment

Starting your environment will allow you to access your shell, and Jupyter notebooks. Once the environment is started,
you can immediately use your browser to connect to Jupyter notebooks on your localhost.

To start your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-start

11.6 Stop your environment

To stop your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

24 Chapter 11. Project operations

Data Science blueprint, Release 1.0

$ make environment-stop

11.7 Restart your environment

To restart your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-restart

11.8 Get your environment status

To check whether your environment is running, and where you can access your Notebooks interface, just open a
terminal, move to the folder where the blueprint is installed, and type in the following command:

$ make environment-status

11.9 Access your environment shell

You can load a shell in your environment. This will allow you call your project package through command lines, and
also test your code. To enter your shell, just open a terminal, move to the folder where the blueprint is installed, and
type in the following command:

$ make environment-shell

11.10 Load the sample data

The blueprint comes with some sample data to load into your project. This command will only be useful for the sake
of the tutorial. You may update this command according to your needs.

The data that will be loaded into your project is a data sample of the visitors and travellers arriving in New Zealand
from June 2014 to June 2019. To load this data, just open a terminal, move to the folder where the blueprint is installed,
and type in the following command:

$ make environment-data

11.11 Clean your project

This command will remove from your project all the temporary files, in particular those that shall never be pushed on
Github. If you identify other temp files to add, feel free to update the Makefile.

To clean your project, just open a terminal, move to the folder where the blueprint is installed, and type in the following
command:

$ make clean

11.7. Restart your environment 25

Data Science blueprint, Release 1.0

11.12 Test your project

To run unit tests to your project, just open a terminal, move to the folder where the blueprint is installed, and type in
the following command:

$ make test

11.13 Visualize the tests coverage for your project

After running your unit tests, you can use visualization of the tests coverage. To do so, just open a terminal, move to
the folder where the blueprint is installed, and type in the following command:

$ make coverage

11.14 Check the code quality of your project

The Data Science blueprint uses Flake8 to test the code quality of the project. To output the coding styles tests that
wouldn’t pass, just open a terminal, move to the folder where the blueprint is installed, and type in the following
command:

$ make lint

26 Chapter 11. Project operations

CHAPTER 12

Make the installation your own

12.1 Updating cookiecutter template

The cookiecutter template is written in the file cookiecutter.json. You are free to update the file and add (or
remove) the parameters that you need. Keep in mind that if you update this file, you will need to crawl the blueprint
code in order to integrate the new parameters.

If you want more information about how to update the cookiecutter.json file, you can take a look at the
cookiecutter documentation

12.2 Updating the Makefile

If you want to add new commands, or update existing commands, you are free to open the file Makefile, and update
it according to your needs.

27

https://cookiecutter.readthedocs.io/en/latest/first_steps.html

Data Science blueprint, Release 1.0

28 Chapter 12. Make the installation your own

CHAPTER 13

Commands

Your work environment will be built with Docker. Therefore, in order to create this environment, you will have to
build a Docker image.

To build your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-build

13.1 Start your environment

Starting your environment will allow you to access your shell, and Jupyter notebooks. Once the environment is started,
you can immediately use your browser to connect to Jupyter notebooks on your localhost.

To start your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-start

13.2 Stop your environment

To stop your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-stop

29

Data Science blueprint, Release 1.0

13.3 Restart your environment

To restart your environment, just open a terminal, move to the folder where the blueprint is installed, and type in the
following command:

$ make environment-restart

13.4 Get your environment status

To check whether your environment is running, and where you can access your Notebooks interface, just open a
terminal, move to the folder where the blueprint is installed, and type in the following command:

$ make environment-status

13.5 Access your environment shell

You can load a shell in your environment. This will allow you call your project package through command lines, and
also test your code. To enter your shell, just open a terminal, move to the folder where the blueprint is installed, and
type in the following command:

$ make environment-shell

13.6 Load the sample data

The blueprint comes with some sample data to load into your project. This command will only be useful for the sake
of the tutorial. You may update this command according to your needs.

The data that will be loaded into your project is a data sample of the visitors and travellers arriving in New Zealand
from June 2014 to June 2019. To load this data, just open a terminal, move to the folder where the blueprint is installed,
and type in the following command:

$ make environment-data

13.7 Clean your project

This command will remove from your project all the temporary files, in particular those that shall never be pushed on
Github. If you identify other temp files to add, feel free to update the Makefile.

To clean your project, just open a terminal, move to the folder where the blueprint is installed, and type in the following
command:

30 Chapter 13. Commands

CHAPTER 14

Build & Start

The blueprint’s environment runs with Docker. Therefore, before using it, you must build it. All is done thanks to the
Dockerfile file that is located at the root of the project.

The content of the Dockerfile is pretty straightforward:

FROM jupyter/base-notebook:python-3.7.6

COPY docker/docker-entrypoint.sh /home/
COPY requirements.txt /home/requirements.txt
RUN rm -rf /home/jovyan/work

RUN pip install -r /home/requirements.txt

ENTRYPOINT ["sh", "/home/docker-entrypoint.sh"]

The base image used (base-notebook here) can be configured in the cookiecutter.json. In this file, you can
set the default value for the docker_base_image parameter, and you will also be prompted the parameter when
installing the blueprint with the cookiecutter command.

When the blueprint’s environment is built, you can start it with this command:

$ make environment-start

The output of this command should be:

8c512b6e09c1b5551075fb8921b24f08044dad876e102cd0e7f1813943c1816a
Environment is running!
Notebooks interface is available at http://localhost:8888

The Jupyter notebook interface is then accessible through port 8888 (by default). It is also possible to configure the
default port value in the cookiecutter.json file.

All the dependencies listed in the file requirements.txt will be loaded in the environment during its build. This
means that if you update the file requirements.txt and you want to add those new dependencies to the environment,
you will need to build it again.

31

Data Science blueprint, Release 1.0

To do so, just launch a new build thanks to the following command:

$ make environment-build

32 Chapter 14. Build & Start

CHAPTER 15

Notebook

After starting the blueprint’s environment, you will have an access to Jupyter notebooks. The default port used for the
interface is 8888. You can configure the default port value thanks to the file cookiecutter.json.

15.1 Mapping folders

When the environment is started, it is automatically mapped with your local folders so that in the Jupyter interface,
you you will see the following folders:

• notebooks, that is mapped with the notebooks folder of your project

• scripts, that is mapped with the scripts folder of your project

• data, that is mapped with the data folder of your project

That said, you will be able to launche the Juypter interface, create your notebooks and scripts, and theyr will automat-
ically be saved in your project. Therefore, there is no need to export any notebook or Python code. You can safely
save your workspace to Github.

33

Data Science blueprint, Release 1.0

15.2 Working with passwords

It is often recommended to secure the Jupyter interface with a password or a token. The purpose of theis blueprint
is to provide you with a coding environment. As I expect that you will be the single user of this environment, I
have suggested that you wouldn’t require any password. Though, it is possible to activate a password to your Jupyter
interface.

To activate the password, you can update the default password value (currently set to null) in the file
cookiecutter.json. When installing the blueprint, you will also be prompted whether or not you wish to use a
password for your notebooks. At this point of the installation, you can also set a password.

15.3 Working with your packaged project

Every time you start your environment, your project will be packaged and deployed in the environment. It is then
made possible to import your project in your notebooks, and work with as if you had installed a new dependency.

You can then add some code to your project, and live test it in your notebooks. As you update your code, its packaged
version in your notebooks will automatically be updated. The only limitation is that Jupyter takes a snapshot of your
Python environment status when it loads its workspace. Therefore, if you update your project code, you will need to
reload your notebook’s workspace, and rerun the cells.

34 Chapter 15. Notebook

CHAPTER 16

Shell

It is possible to open a shell to your environment. This can be useful if you want to manually install dependencies to
your environment, or test a python script. Please note though that the operations that you will apply to your environ-
ment will not be persistent. This means that if you manually install dependencies and restart your Docker environment,
you will have to install your dependencies again. To make them persistent, you may update the requirements.txt
file and persist by rebuilding the environment.

To access your environment shell, just use this command:

$ make environment-shell

This will behave a bit the same as if you were using SSH. Once in the shell, you can simply exit it with a exit
command.

16.1 Working with your packaged project

Every time you start your environment, your project will be packaged and deployed in the environment. It is then
made possible to import your project in your notebooks, and work with as if you had installed a new dependency.

You can then add some code to your project, and live test it with Python scripts. As you update your code, its packaged
version in PYTHON_PATH will automatically be updated.

This can be very useful as for instance, it allows you to create some test scripts (you may store them in the script folder
in the environment, and they will be mapped with the scripts folder in your project), and test/challenge your code.

If you decide to test your code with Python command in interactive mode, you will need to reload the python cache in
your environment, to take into account the code updates. You can also exit the python interactive mode, and reload it
again.

35

Data Science blueprint, Release 1.0

36 Chapter 16. Shell

CHAPTER 17

Make the environment your own

The blueprint’s environment is entirely managed with Docker. Therefore, if you wish to customize the environment,
you may update the following files

17.1 Updating Dockerfile

The Dockerfile’s content is pretty straightforward:

FROM jupyter/base-notebook:python-3.7.6

COPY docker/docker-entrypoint.sh /home/
COPY requirements.txt /home/requirements.txt
RUN rm -rf /home/jovyan/work

RUN pip install -r /home/requirements.txt

ENTRYPOINT ["sh", "/home/docker-entrypoint.sh"]

The installation process is explained as follow:

• Load the base docker image for jupyter notebooks

• Copy the starting script

• Copy the python dependencies list

• Install the dependencies

• Map the image starting script with the one we have just added

37

Data Science blueprint, Release 1.0

17.2 Updating docker-entrypoint

The purpose of the docker-entrypoint script is just to prepend the jupyter workspace launch with a package build of
your project. Thanks to this docker-entrypoint script, you can use your project as a python package, in your working
environment.

The docker-entrypoint file is located here : docker/docker-entrypoint.sh

38 Chapter 17. Make the environment your own

CHAPTER 18

Flake8

I have chosen flake8 package to test coding conventions. Indeed, you are free to use your own, but flake8 is installed
by default, and it is working just fine.

18.1 Installation and usage

To work it, you don’t have to integrate anything in your code.

Here are the few steps to follow to use flake8 :

Installation (once):

$ make install

Use:

$ make lint

18.2 Configure flake8

Flake8 configuration is stored in the file setup.cfg. In the [flake8] section, you can update a few parameters:

[flake8]
max-line-length = 79
max-complexity = 10
filename = ./awesome_project/*.py

If you need to get some information about flake8 parameters, you can check these links:

• flake8 options

• flake8 error codes

39

https://flake8.pycqa.org/en/2.5.5/config.html
https://flake8.pycqa.org/en/2.5.5/warnings.html#error-codes

Data Science blueprint, Release 1.0

40 Chapter 18. Flake8

CHAPTER 19

Unit tests

I ‘ve decided to use pytest package to run unit tests.

To run unit tests over your project, you can use the command:

$ make test

The unit tests are located in the package’s test folder. I recommend you follow the folder structure of the files that
are tested. For instance in the blueprint, the python code that is covered with unit tests is located in the operators
folder. This is why unit tests are located in the folder tests/operators.

The output of the unit test will look like this:

platform darwin -- Python 3.7.2, pytest-5.4.1, py-1.8.0, pluggy-0.13.1
collected 4 items

awesome_project/tests/operator/test_data.py . [25%]
awesome_project/tests/operator/test_dataframe.py .. [75%]
awesome_project/tests/operator/test_generator.py . [100%]

======================== 4 passed in 0.82s =============================

41

Data Science blueprint, Release 1.0

42 Chapter 19. Unit tests

CHAPTER 20

Code coverage

After running unit tests, you can display the code coverage of your project. To show the code coverage, simply use the
command:

$ make coverage

The output of the coverage report should look like this:

Name Stmts Miss Cover Missing

awesome_project/__init__.py 4 0 100%
awesome_project/operator/data.py 6 0 100%
awesome_project/operator/dataframe.py 6 0 100%
awesome_project/operator/generator.py 4 0 100%
awesome_project/tests/operator/test_data.py 6 0 100%
awesome_project/tests/operator/test_dataframe.py 11 0 100%
awesome_project/tests/operator/test_generator.py 3 0 100%

TOTAL 40 0 100%

43

Data Science blueprint, Release 1.0

44 Chapter 20. Code coverage

CHAPTER 21

Package your project

Packaging your project should be the final step before deploying in your production environment. The purpose of this
step is to convert your project to a Python package, that will be installed on your machine.

Once your project is packaged, it can be imported by any Python code that would be running on your machine. This
makes your project portable, and exportable in a Docker image, on Pypi repository, or on a remote machine. At this
stage of the blueprint, the strategy to deploy on production is yours.

To package your project, just use this command:

$ make package

It is also the very same command that is used in the blueprint’s environment, and allows you to use your packaged
project with your notebooks.

45

Data Science blueprint, Release 1.0

46 Chapter 21. Package your project

CHAPTER 22

Create your app

After your project is deployed, the question of how you will interact with it remains. You can certainly open a Python
shell or call a Python command and call a module, but this is will require you to strictly interact with Python, which is
not very comfortable, in particular if you wish to deploy in production, and maybe interact with other programs.

This is why the blueprint also onboards command lines, so that you can call some specific modules with a dedicated
command line on your machine.

I guess this would be much more convenient to train a model by simply calling it in a shell:

mymodel-cli train xgboost datafile.csv output

This is just an example to show you that working like will make your deployments and in-production executions much
more accessible.

22.1 Create you cli interfaces

You can declare your cli interfaces in the file setup.py:

entry_points={
'console_scripts': [

'awesome-project-cli={}.commands.cmd:main'.format(config['application'][
→˓'package'])

]
}

For the sake of the blueprint, an example of entry point was written : awesome-project-cli. You can access the
source code of this command line in the file commands/cmd.py. You are free to update the entry points and add
your owns as you wish.

In the blueprint’s example, one sample call is defined like this:

awesome-project-cli lorem 10 --text-size=50

47

Data Science blueprint, Release 1.0

48 Chapter 22. Create your app

CHAPTER 23

Indices and tables

• genindex

• modindex

• search

49

	Introduction
	Blueprint’s structure
	Make this your own
	Installation
	Environment
	Quality testing
	Using the cli interface
	Requirements
	Using cookiecutter
	Installation
	Project operations
	Make the installation your own
	Commands
	Build & Start
	Notebook
	Shell
	Make the environment your own
	Flake8
	Unit tests
	Code coverage
	Package your project
	Create your app
	Indices and tables

